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Abstract—This paper proposes a scheme for multiple un-
manned aerial vehicles (UAVs) to track multiple targets in
challenging 3-D environments while avoiding obstacle collisions.
The scheme relies on Received-Signal-Strength-Indicator (RSSI)
measurements to estimate and track target positions and uses a
Q-Learning (QL) algorithm to enhance the intelligence of UAVs
for autonomous navigation and obstacle avoidance. Considering
the limitation of UAVs in their power and computing capacity, a
global reward function is used to determine the optimal actions
for the joint control of energy consumption, computation time,
and tracking accuracy. Extensive simulations demonstrate the
effectiveness of the proposed scheme, achieving accurate and
efficient target tracking with low energy consumption.

Index Terms—Multi-target tracking, UAV, Q-Learning, Edge
Computing.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as a
highly promising platform for target tracking systems, primar-
ily owing to their exceptional mobility, adaptable deployment
capabilities, and cost-effectiveness [1]. The versatility of UAVs
lies in their ability to cover vast areas across different altitudes
and locations, while also offering superior Line-of-Sight (LoS)
links compared to ground Base Stations (BSs), courtesy of
their elevated altitude. Consequently, UAVs stand as an ideal
choice for target tracking applications. Especially in challeng-
ing scenarios where ground service agents are unavailable,
UAVs play a pivotal role, diligently and precisely tracking
targets [2].

However, limited communication range, battery capacity,
and computing capacity are the main challenges of UAVs in a
target tracking system. To deal with these challenges, a swarm
of autonomous UAVs can be effective. A swarm of UAVs can
be used to ensure effective communication coverage in the
long term. The utilization of Edge Computing (EC) is also a
promising solution to tackle the challenges faced by UAVs.
For example, by leveraging the computational capacity of the
edge, compute-intensive operations of UAVs can be offloaded
to Edge Nodes (ENs) and as a result, enhance both computing
quality and the lifetime of the UAVs network [3], [4]. As
shown in [5], UAV-enabled EC has been conceptualized as
a viable option to enhance the target tracking process.

In recent years, UAV-aided target detection and tracking
has been studied. In [6], a Deep Q-Network (DQN) was
constructed, with a finite action space, to deal with the limited
field of view (FOV) of the camera equipped on the UAV,
where a reward function was designed to take into account
whether a target is within the FOV. In [7], authors introduced
a motion planning algorithm based on the unscented Kalman
filter (UKF) for UAVs to estimate the state of the target.
The motion planner determines the UAV trajectory, which
includes acceleration and turn rate. In [8], a reinforcement
learning (RL) technique is used to train a swarm of UAVs
to determine the optimal routes that maximize the probability
of observing the targets. Existing works on target tracking
employed different technologies and methods. However, it is
still an open research problem. According to [9], mobile target
tracking is a challenging problem due to the uncontrollable
motion of the target, making the task even more complicated.

In this work, we focus on addressing the challenge of
controlling multiple UAVs to track multiple targets, with the
constraints of communication and computing resources of
UAVs. To this end, we present a new approach where RSSI
is used, due to its low cost and power consumption, hardware
simplicity, and the ability to use simple receivers. More specif-
ically, a Q-learning-based algorithm for UAV control action
selection is proposed, along with a novel reward function that
encourages UAVs to learn an optimal policy for improved
tracking with maximum expected cumulative reward while
considering accuracy, latency, and energy consumption. The
key contributions of the paper are as follows:

1- We present a scheme using the QL algorithm that controls
multiple UAVs in 3-D environments to achieve optimal
tracking of multiple targets.

2- We develop an efficiency-maximizing reward function
that accounts for joint optimization of accuracy, delay,
energy consumption, and obstacle avoidance.

The paper is organized as follows: Section II presents the
system model, Section III explains the proposed scheme,
Section IV analyzes the scheme through simulations, and
Section V provides concluding remarks.
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II. SYSTEM MODEL

In this section, we discuss the target and UAV trajectory
models along with the channel model between UAVs and the
target, for the scenario shown in Fig. 1, which includes the
targets, ENs, and UAVs equipped with RSS sensors.

A. Target Trajectory Model

In the system, there are M targets that have mobility
on the ground. Each target has a start point (xs

m, ysm) and
endpoint (xe

m, yem), where m = 1, · · · ,M . Each target
chooses a path between these two points for its movement
by considering obstacle avoidance. The initial location of
m-th Radio Frequency (RF) target is fixed at postarm =
[xtar

m (0) = xs
m, ytarm (0) = ysm] and the time-varying location

of target is denoted as postarm (t) = [xtar
m (t), ytarm (t)] at time

t. Here, the target movement velocity is defined as vtarm (t) =[
vtarx,m(t), vtary,m(t)

]
.

B. UAV Trajectory Model

In this system, there exists N UAVs in which each
UAV flies at different altitudes. We assume that the ini-
tial location of the UAV at time t = 0 is posuavn (0) =
[xuav

n (0), yuavn (0), zuavn (0)], where n = 1, · · · , N . The time-
varying location of the n-th UAV at time t is denoted as
posuavn (t) = [xuav

n (t), yuavn (t), zuavn (t)] and flight velocity of
UAV is defined as vuavn (t) =

[
vuavx,n (t), vuavy,n (t), vuavz,n (t)

]
. Let

posuavn (t) be the coordinate of the n-th UAV at time t. Hence,
the sequence of points Ln = {posuavn (0), · · · , posuavn (Tn)}
can be used to express the trajectory of the n-th UAV where
Tn is the total time that n-th UAV flies during its trajectory,
which depends on the trajectory length and velocity of the
UAV, and can be obtained as follows [10]:

Tn =

T−1∑
t=0

∥posuavn (t+ 1)− posuavn (t)∥
vuavn (t+ 1)

(1)

C. Channel Model

The received power captured by the RSS sensor mounted
on the n-th UAV at time t can be mathematically expressed
as [11]:

rssiuavn (t) = PTX − PLn(t)− ρn, (2)

here, PTX represents the constant transmit power of the RF
target, while PLn(t) denotes the path loss between the n-th
UAV and the target at time t. ρn is an exponential random
variable with a unit mean incorporating the effect of Rayleigh
fading. The RSS measurements in each UAV can be denoted
by RSSIn = [rssiuavn (0), · · · , rssiuavn (Tn)].

III. DESIGN OF MULTI-TARGET TRACKING BY
MULTI-UAV BASED ON Q-LEARNING AND

MULTILATERATION

In this section, we outline our scheme for the multi-target
tracking problem. In this work, Q-learning, normalization, and
multilateration form the core of our scheme.

A. Q-Learning

The Q-learning algorithm is a value-based Reinforcement
Learning (RL) technique that is specifically designed for
deterministic policies. In RL algorithms, the primary goal is to
identify the optimal policy π∗ that maximizes the cumulative
reward over the long term. During each time slot, the QL
algorithm determines an action to be performed by the UAV.
Upon taking an action a, the UAV receives a reward r (s, a)
and transitions to a new state s′. Following each decision, the
Q-value of the state-action pair is updated as:

Q (s, a)← (1− α)Q (s, a) + α

[
r (s, a) + γ max

a′∈A
Q (s′, a′)

]
(3)

where γ ∈ (0, 1] is a discount factor that determines the impor-
tance of future rewards, and α is the learning rate that controls
the extent to which new information overrides old information.
The optimal policy can be learned through interactions with
the environment and recording the corresponding experiences
(s, a, r, s′).

B. Multilateration

Multilateration is the process of determining the unknown
position coordinates of a point of interest. In target tracking,
using multilateration method for locating the m-th target with
position postarm , the distance from rm,n to n-th UAV with
position posuavn is given as

rm,n =

√
(xtar

m − xuav
n )

2
+ (ytarm − yuavn )

2 (4)

C. Multi Target Tracking Using a Swarm of UAVs

In this work, a swarm of UAVs was considered to track each
target. Once the position of the detected target is estimated,
the edge node (EN) selects a swarm of nearby UAVs to
track the target. These UAVs form a cluster consisting of
a Cluster Head (CH) and other UAVs that are directly and
wirelessly connected to the CH. Since each UAV is limited
by its battery capacity, the EN selects a UAV with the highest
battery capacity as the CH. It is worth noting that the number
of UAVs in each cluster should be at least two.

Since the Q-learning algorithm utilized in UAVs is a state-
action algorithm, we considered some allowable control ac-
tions for UAVs that can be taken at each state. In this work,



the number of actions is equal to η = 8. These actions
denote the flight direction along the x, y, and z-axis. UAVs
determine the flight direction by choosing one action from
discrete action space AS = {a1, a2, · · · , aη}. We assumed
that UAVs have only horizontal movement, hence, the UAV
dynamics are formulated as follows:

posuavn (t) = posuavn (t− 1) +

 d ∗ cos(θi)
d ∗ sin(θi)
zuavn (t− 1)

 (5)

where d is the velocity of the target at time t, θi = i ∗ 2π
|AS|

for i ∈ [1, η].
The Q-learning algorithm considers three parameters,

namely accuracy, delay, and energy, to optimize the target
tracking performance of UAVs. To account for these param-
eters, we designed a reward function that aims to minimize
energy and delay while maximizing accuracy. Thus, the reward
function can be expressed as follows:

reward = w1 ∗ (1− E∗) + w2 ∗ (1−D∗) + w3 ∗A∗ (6)

The weights assigned to energy, delay, and accuracy are
denoted by w1, w2, and w3, respectively. The normalized
values of consumed energy, delay, and accuracy, obtained
through Min-Max normalization [12], are represented by E∗,
D∗, and A∗, respectively.

In this work, the energy consumption of UAVs E is deter-
mined by the energy consumed during flight of UAV Eflight

as follows [13]:
E = Eflight (7)

where

Eflight = (Wuav × g × dist) + (Fp × vuavn × dist) (8)

Here, Eflight is the total energy consumption during flight (in
joules), Wuav is the weight of the UAV (in kilograms), g =
9.81m/s2 is the acceleration due to gravity, dist is the total
distance traveled during the flight (in meters), Fp is the average
propulsion force required to maintain flight (in newtons), and
vuavn is the average flight speed (in meters per second).

The delay between the target and UAV is directly propor-
tional to the time taken for the signal to propagate between
them. Hence, we can express the delay D as a function of
propagation time Dprop as follows:

D = Dprop (9)

where Dprop = Distance/Speed, (Speed = 3 × 108m/s).
As the distance between the target and UAV increases, the
propagation time also increases, leading to an increase in the
overall delay.

To compute accuracy A, the distance between UAV and the
target is considered as follows:

A = distmn =
∥∥posuavn − postarm

∥∥ (10)

where ∥.∥ is the Euclidean distance.
The parameters E, D, and A are measured and then

subjected to Min-Max normalization to accommodate their

different ranges of values and units. The normalized values are
denoted as E∗, D∗, and A∗ in the output. Additionally, since
accuracy is considered more important than energy consump-
tion and delay, we assigned it a higher weight. Specifically,
we set w1 = 1

4 , w2 = 1
4 , and w3 = 1

2 .
In each state, every UAV selects the optimal action from

a set of η possible actions (i.e., flight directions) using the
Q-learning algorithm and leveraging the reward function. To
achieve the final objective, avoiding obstacle collisions, we
assign a reward value of reward = 0 to each action where the
probability of obstacle collision is high. Then, UAV measures
the RSSI from the power level of a received signal of the
target m. The RSSI rssiuavn (t) measured by UAV n as well
as current position posuavn (t) of UAV available in the cluster
will be sent to the CH. Next, CH executes the Multilateration
function and estimates the position of the target m. Finally,
CH sends the estimated position to all UAVs in the cluster.
Once UAVs receive the position of the target, UAVs run the
Q-learning algorithm for selecting the next state. This process
will be repeated until the target (e.g. m) reaches the endpoint
(e.g. (xe

m, yem)). Fig. 2 represents the process of target position
estimation as well as target tracking by our scheme. This figure
also shows the process of data communication between a UAV
and a CH.

As mentioned above, each UAV is limited by its battery
capacity. The energy consumption of each UAV is affected
by several factors such as weight, aerodynamics, flight speed
and altitude, and environmental conditions. Computation, com-
munication, and task complexity also contribute to power
consumption. The UAV’s onboard computing system includes
a processor, memory, and other components that consume
energy. The processing load is primarily determined by the
task complexity, dataset size, and algorithm used. Communi-
cation between UAVs and ground stations requires the use of
communication systems, such as radios or transceivers, which
also consume energy. The energy consumption of the commu-
nication system depends on the amount of data transmitted or
received, the distance, and the quality of the communication
link. Higher data rates or longer distances typically require
higher transmit powers, leading to higher energy consumption.

To address this issue, we established two threshold values
for the battery power of UAVs. These thresholds are utilized
to monitor the state of the battery during the UAV’s flight.
By setting these threshold values, we can ensure that the
UAV operates within a predetermined energy budget, which
not only prolongs its flight time and range but also enhances
its reliability and lowers the likelihood of battery depletion
during a mission. Whenever the battery power of a UAV,
such as UAVn, falls below the first threshold value, it sends
a warning message to the nearby EN to report its status. It
also stops measuring RSSI and sends a request message to
CH asking for the target’s position until its battery power is
sufficient for target tracking. Concurrently, the EN attempts
to find a replacement UAV to swap with UAVn. If UAVn’s
battery power falls below the second threshold value, it sends
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Fig. 2. The process of data communication between UAV and CH.
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Fig. 3. The process of UAV battery power monitoring.

an error message to the nearby EN and CH, and then initiates
the landing function. This process is illustrated in Fig. 3.

IV. NUMERICAL RESULTS

This section presents the numerical results of our scheme,
specifically tracking accuracy and energy consumption. MAT-
LAB was used as the simulation platform, and an obstacle-
filled environment was created using a matrix with cylinders
and cones representing the obstacles. The simulation involved
five UAVs tracking two targets in this environment. Here, the
tracking of target 1 is performed by three UAVs, namely
{UAV1, UAV2, UAV3}, while target 2 is tracked by two
UAVs, namely {UAV4, UAV5}. We also included three edge
nodes (ENs) in the simulation. Each UAV is capable of
communicating with an EN that is within its communication
range. In order to assess the effectiveness of our scheme, we
established three separate scenarios, outlined as follows:

• Cluster 1: In this scenario, three UAVs are organized into
a cluster, and a single UAV is designated as the cluster
head (CH). The two remaining UAVs communicate with
the CH and nearby EN and do not directly communicate
with each other.

• Cluster 2: In this scenario, two UAVs are grouped into
a cluster, and one UAV is elected as a cluster head (CH).
Another UAV is able to communicate with CH and nearby
ENs.

• Non-Clustered: In this scenario, there is no clustering
of UAVs. Instead, three individual UAVs are assigned to
track a target and are able to communicate with each
other as well as nearby ENs.

The initial positions of each UAV and target were defined
as previously explained. Target 1 has a starting position of
postar1 (0) = [2, 1] meters, while target 2 has a starting position
of postar2 (0) = [1, 6] meters. Both targets have a designated
endpoint of [30, 15] meters. To move toward the endpoint
while avoiding obstacles, each target randomly selects a path
between its start point and the endpoint. Additionally, we have
defined the initial positions of five UAVs as posuav1 (0) =
[1, 2, 2.5], posuav2 (0) = [3, 4.5, 3], posuav3 (0) = [6, 1, 2],
posuav4 (0) = [4.5, 6, 3], and posuav5 (0) = [2, 10, 4] meters.
Each target is initially assigned a velocity, and their velocities
can vary from 1m/s to 5m/s during their movement along
the trajectory. The UAVs adjust their velocity during target
tracking based on the velocity of the target. Here, we assume
that each UAV will receive information about obstacles from
nearby ENs to avoid the collision. The information includes
the dimensions of the obstacles such as length, width, height,
diameter, and other relevant details.

The root means square error (RMSE) can be an effective
metric for assessing the accuracy of the scheme’s performance
[14]. To this end, we consider the actual position of the target
and the estimated position of the target by the UAVs. For
all positions that the target passed during its trajectory, we
measured the RMSE. We carried out this procedure for each
of the aforementioned scenarios individually. The RMSE was
computed using the following equation:

RMSE =

√∑K
i=1(x

tar
i − x̂i

tar)2 + (ytari − ŷi
tar)2

K
(11)

where K is the number of positions that the target passed
during its trajectory, and [xtar

i , ytari ] and
[
x̂i

tar, ŷi
tar

]
rep-

resent the actual and estimated positions of the target at the
i-th position, respectively. Fig. 4 presents a comparison of
the RMSE for each scenario. It is observed that the accuracy
of the proposed scheme in scenario 1 is superior to those in
other scenarios. This can be attributed to the higher number
of UAVs present in scenario 1, as compared to scenario 2 in
cluster-based scenarios. In real-time applications like target-
tracking, both the computation and communication delay have
a significant impact on application performance accuracy.
The reduced number of connections and communications for
sending/receiving information between UAVs in scenario 1
compared to scenario 3 leads to higher accuracy in the former.

We conducted experiments to measure the total energy
consumption by each UAV during the target tracking process.
The results, as shown in Fig. 5, indicate that the energy
consumed by UAVs in the cluster-based scenario is less than
that in the non-clustered scenario. This is due to the reduced
communication and computation requirements in the cluster-
based scenario.



Fig. 4. Comparison of measured RMSE in each
scenario

Fig. 5. Comparison of total energy consumption by
each UAV in clustered and non-clustered scenarios

Fig. 6. Comparison of our scheme with CLRB-
based scheme over 100 Monte Carlo experiments.

In addition, we conduct a comparative analysis of our
scheme with a Cramér–Rao Lower Bound (CRLB) based
scheme proposed in [15] over 100 Monte Carlo experiments.
The CRLB is a fundamental concept used in target tracking
to estimate the accuracy of any unbiased estimator. It serves
as a benchmark for assessing the quality of target tracking
algorithms. The comparison focuses on assessing the perfor-
mance in terms of Root Mean Squared Error (RMSE). For our
scheme, we evaluate its performance under the first scenario
with different numbers of allowable control actions (η = 8 and
12). As depicted in Fig. 6, the QL-based control demonstrates
tracking performance comparable to the CRLB-based control,
which is considered the optimal control scheme.

V. CONCLUSION

In this study, a scheme based on RSSI has been proposed
for tracking multiple targets using multiple UAVs. The QL
algorithm and Multilateration are the core of the proposed
scheme. Due to the limitation of power capacity and the
computing capacity of UAVs and in addition, the importance
of delay in the target tracking, energy consumption, delay, and
accuracy have been considered as three main parameters in the
reward function of the QL algorithm. We have analyzed our
scheme in cluster-based and non-cluster-based scenarios. The
obtained results showed that our scheme based on clustering
has provided a more accurate and efficient target-tracking
solution with lower energy.
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